Syllabus for ECE/CS 8803 ECS: Empirical Computer Security

Instruction Information

Instructor Name:	Prof. Frank Li		
Course Hours:	Tuesday / Thursday, 2:00PM - 3:15PM (3 Unit Course)		
Course Location:	Van Leer C340		
TA	TBD		
Office Hours:	TBD		
Email:	<u>frankli@gatech.edu</u>		

General Information

Description

Empirical security research seeks to understand how computer security concerns manifest in practice. For example, what strategies and techniques do attackers actually use, and how do they profit from their actions? How do users behave in different security contexts, and why do they behave in those (often insecure) ways? Gaining this understanding is vital for driving improvements in real-world security.

This seminar-style course will cover both classic and recent empirical security studies across a wide range of security topics, including Internet security, underground ecosystems, usable security, and online privacy. You will analyze, critique, and discuss these works. Beyond broadening your knowledge of real-world computer security, you will gain a deeper understanding of sound and rigorous measurement methodologies for applying to your own work.

Pre- &/or Co-Requisites

You are expected to have familiarity with core computer security and computer networking concepts.

(Expected) ECE 4410 Internetwork Programming / CS 4251 Computer Networking or equivalent

(Expected) ECE 4115 Introduction to Computer Security / CS 4235 Introduction to Information Security or equivalent

(Helpful But Not Expected) ECE4112 Internetwork Security / CS 4237 Computer and Network Security *or equivalent*

Course Goals and Learning Outcomes

The goals of this course are to expand your understanding of real-world security and prepare you to:

- Recognize how theory and empiricism complement each other in computer security research
- Identify limitations or shortcomings in empirical security methodologies
- Engage in critical discussion around key research topics in computer security
- Write and present a paper conforming to the security research community's standards
- Propose sound and rigorous measurement methodologies for open-ended research problems

Strategic Performance Indicators (SPIs)

Outcome 1: Students will demonstrate expertise in a subfield of study chosen from the fields of electrical engineering or computer engineering. Upon successful completion of the course, the student should be able to:

• Explain different classes of empirical security methods and their benefits and limitations

Outcome 2: Students will demonstrate the ability to identify and formulate advanced problems and apply knowledge of mathematics and science to solve those problems. Upon successful completion of the course, the student should be able to:

• Determine an appropriate empirical method to apply given a security or privacy scenario to measure

Outcome 3: Students will demonstrate the ability to utilize current knowledge, technology, or techniques within their chosen subfield. Upon successful completion of the course, the student should be able to:

• Apply common software tools to collect data on a security or privacy phenomena

Course Requirements & Grading

As a seminar-style course, the grading will be based on reading and analyzing the assigned paper readings, engaging with class discussion, and conducting and presenting a research-oriented final project.

Assignment	Weight	Description
Participation	20%	Attend and engage with class meetings (ask and answer questions, provide comments).
Discussion Lead	10%	For one class during the semester, prepare and present a 25 minute presentation summarizing the class's reading, and help lead the class discussion.
		For each class, 1-2 student(s) will serve as discussion lead(s).
Paper Summaries (written)	20%	For each assigned paper (including the paper you lead discussion for), submit a brief paper summary, analysis, and questions. In total, 2 summaries can be skipped during the semester. If you lead a discussion solo, you can skip an additional summary (for a total of 3 summary skips).
Final Project	50% Total	Semester-long research project (groups of 2-4 students).
- Project Proposal	10%	Submit a project pre-proposal for feedback on project ideas (due 9/24). Write and present a project proposal (on 10/8 and 10/10), subject to change).
- Project Presentation	10%	Present a talk and/or demo on your final project (starting 11/19).
- Project Writeup	30%	Submit a research-style paper on your final project (due 12/6).

There are no extra credit opportunities.

Grading Scale

The course will not be graded on a curve. Your final grade will be assigned as a letter grade according to the following scale:

- А 90-100%
- В 80-89%
- С 70-79%
- D 60-69%
- F 0-59%

Course Materials

Course Text

There is no required course textbook.

For optional supplemental or background reading, we recommend: Introduction to Computer Security, Michael T. Goodrich and Roberto Tamassia, Addition Wesley, 2011.

Course Website and Other Classroom Management Tools

We will use Canvas for course organization and Piazza for discussion and classwide communication.

Course Expectations & Guidelines

Academic Integrity

Georgia Tech aims to cultivate a community based on trust, academic integrity, and honor. Students are expected to act according to the highest ethical standards. For information on Georgia Tech's Academic Honor Code, please visit http://www.catalog.gatech.edu/policies/honor-code/ or http://www.catalog.gatech.edu/rules/18/.

Any student suspected of cheating or plagiarizing on an assignment will be reported to the Office of Student Integrity, who will investigate the incident and identify the appropriate penalty for violations.

Accommodations for Students with Disabilities

If you are a student with learning needs that require special accommodation, contact the Office of Disability Services at (404)894-2563 or <u>http://disabilityservices.gatech.edu/</u>, as soon as possible, to make an appointment to discuss your special needs and to obtain an accommodations letter. Please also e-mail me as soon as possible in order to set up a time to discuss your learning needs.

Attendance and/or Participation

As this is a seminar-style course, attendance and engagement with class discussions is vital. While I will not be taking explicit attendance each class, I will track those who speak and participate. Participation is 20% of your grade.

In addition, students will be expected to present summaries of 1-2 papers throughout the semester and lead the associated class's discussion. This discussion leading accounts for an additional 10% of your grade.

You may need to miss a class for legitimate reasons (e.g., sick, onsite interviews). For illnesses or personal emergencies, contact the Office of Student Life, as described in the policies at http://www.catalog.gatech.edu/policies/student-absence-regulations/. For Institute Approved Absences, we adhere to the Institute policies at https://registrar.gatech.edu/info/institute-approved-absence-form-for-students.

Collaboration & Group Work

Paper summaries should be written and submitted separately by each student, but discussion about papers in groups is allowed and encouraged within reason (e.g., students should still submit distinct paper analyses).

Final projects can be done in groups of 2-3 people (depending on class size).

Extensions & Late Assignments

Assignments are due at the time listed in the schedule. There are no undocumented exceptions. If you have an emergency situation or a school sanctioned exception, please contact me before the due date so we can adjust your assignment deadlines (some documentation may be needed).

Student-Faculty Expectations Agreement

At Georgia Tech we believe that it is important to strive for an atmosphere of mutual respect, acknowledgement, and responsibility between faculty members and the student body. See http://www.catalog.gatech.edu/rules/22/ for an articulation of some basic expectation that you can have of me and that I have of you. In the end, simple respect for knowledge, hard work, and cordial interactions will help build the environment we seek. Therefore, I encourage you to remain committed to the ideals of Georgia Tech while in this class.

Student Use of Mobile Devices in the Classroom

As this course is heavily based on class discussion, I ask that you stay engaged and limit your mobile device usage during class.

Course Schedule

Below is the current course schedule, which is subject to some change as the semester progresses.

===== Week 1 =====

8/20: First Class - Introduction to Empirical Computer Security

No readings, but will cover topics discussed in the following papers:

- SoK: Science, Security, and the Elusive Goal of Security as a Scientific Pursuit.

<u>https://www.microsoft.com/en-us/research/wp-content/uploads/2017/03/scienceAndSecuritySoK.pdf</u> - Strategies for Sound Internet Measurements:

https://www.icir.org/vern/papers/meas-strategies-imc04.pdf

- The Base-Rate Fallacy and the Difficulty of Intrusion Detection.

http://people.scs.carleton.ca/~soma/id-2007w/readings/axelsson-base-rate.pdf

- Outside the Closed World: On Using Machine Learning For Network Intrusion Detection.

https://personal.utdallas.edu/~muratk/courses/dmsec_files/oakland10-ml.pdf

- Legal and Ethical Research:

- http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.145.1147&rep=rep1&type=pdf
- http://mdbailey.ece.illinois.edu/publications/wecsr10_final.pdf

8/22: Denial of Service + Backscatter Measurements (Classic)

Reading: Inferring Internet Denial-of-Service Activity. https://cseweb.ucsd.edu/~savage/papers/UsenixSec01.pdf

===== Week 2 =====

8/27: Distributed Denial of Service (Modern)

Reading: Understanding the Mirai Botnet. <u>https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-antonakakis.pdf</u>

8/29: Network Scanning Applications

Reading: Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices. <u>https://factorable.net/weakkeys12.extended.pdf</u>

===== Week 3 =====

9/3: Internet-wide Network Scanning

Reading: ZMap: Fast Internet-Wide Scanning and its Security Applications. https://zmap.io/paper.pdf

9/5: Other Network Measurements

Reading: A Longitudinal, End-to-End View of the DNSSEC Ecosystem. https://www.cs.umd.edu/~dml/papers/dnssec_sec17.pdf

===== Week 4 =====

9/10: Underground Ecosystem - Spam

Reading: Spamalytics: An Empirical Analysis of Spam Marketing Conversion. <u>https://www.icsi.berkeley.edu/pubs/networking/2008-ccs-spamalytics.pdf</u>

9/12: Underground Ecosystem - Malware

Reading: Measuring Pay-per-Install: The Commoditization of Malware Distribution. <u>https://www.usenix.org/legacy/events/sec11/tech/full_papers/Caballero.pdf</u>

===== Week 5 =====

<u>9/17: Underground Ecosystem - Underground Markets</u> Reading: Click Trajectories: End-to-End Analysis of the Spam Value Chain. <u>https://cseweb.ucsd.edu/~savage/papers/Oakland11.pdf</u>

9/19: Underground Ecosystem - Social Networks

Reading: Trafficking Fraudulent Accounts: The Role of the Underground Market in Twitter Spam and Abuse. <u>http://www.inwyrd.com/blog/wp-content/uploads/2010/03/usenix20131.pdf</u>

===== Week 6 =====

9/24: Web Measurements - Security

Reading: Thou Shalt Not Depend on Me: Analysing the Use of Outdated JavaScript Libraries on the Web. <u>https://www.ndss-symposium.org/wp-content/uploads/2017/09/ndss2017_02B-1_Lauinger_paper.pdf</u> **Project Pre-Proposals Due**

9/26: Web Measurements - Privacy

Reading: The Web Never Forgets:Persistent Tracking Mechanisms in the Wild. <u>https://core.ac.uk/download/pdf/34609562.pdf</u>

===== Week 7 =====

10/1: Web Measurements - Human Factors

Reading: Alice in Warningland: A Large-Scale Field Study of Browser Security Warning Effectiveness. <u>https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_akhawe.pdf</u>

10/3: Authentication / Passwords

Reading: The Tangled Web of Password Reuse. https://www.cs.umd.edu/class/spring2017/cmsc8180/papers/tangled-web.pdf

===== Week 8 =====

10/8: Project Proposal Presentations (Subject to change based on class enrollment) No readings

10/10: Project Proposal Presentations (Subject to change based on class enrollment) No readings

===== Week 9 =====

10/15: No Class: Fall Break

10/17: No Class: ACM CCS Conference Work on your projects

==== Week 10 =====

10/22: Usable Security (Classic)

Reading: Why Johnny Can't Encrypt: A Usability Evaluation of PGP 5.0. <u>http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.40.9279&rep=rep1&type=pdf</u>

10/24: Usable Security (Modern)

Reading: Android Permissions: User Attention, Comprehension, and Behavior https://www.cs.ucy.ac.cy/courses/EPL682/papers/usable-1.pdf

==== Week 11 =====

10/29: Security in Society - Censorship

Reading. Encore: Lightweight Measurement of Web Censorship with Cross-Origin Requests. https://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p653.pdf

10/31: Security in Society - Nation-State Attacks

Reading: When Governments Hack Opponents: A Look at Actors and Technology. <u>https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-marczak.pdf</u>

==== Week 12 =====

11/5: Security in Society - Beyond Traditional Computing

Reading: The Spyware Used in Intimate Partner Violence. <u>https://pages.cs.wisc.edu/~chatterjee/papers/IPV_Spyware.pdf</u>

11/7: Software Security - Zero-Day Vulnerabilities

Reading: Before we knew it: An empirical study of zero-day attacks in the real world. <u>http://users.umiacs.umd.edu/~tdumitra/papers/CCS-2012.pdf</u>

==== Week 13 =====

11/12: Software Security - Patching Vulnerabilities

Reading: The Attack of the Clones: A Study of the Impact of Shared Code on Vulnerability Patching. <u>http://users.umiacs.umd.edu/~tdumitra/papers/OAKLAND-2015.pdf</u>

11/14: Cyber-Physical Security

Reading: Comprehensive Experimental Analyses of Automotive Attack Surfaces. <u>http://www.autosec.org/pubs/cars-usenixsec2011.pdf</u>

==== Week 14 =====

<u>11/19: Final Project Presentations</u> No readings

<u>11/21: Final Project Presentations</u> No readings

==== Week 15 =====

<u>11/26: Final Project Presentations</u> No readings

11/28: No Class: Thanksgiving Break

==== Week 16 =====

12/3: Final Class: Research at GT No readings

Final Project Report due 12/6

DONE WITH CLASS!